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Abstract Pentagrids and duals 

A description is given of three new distinct 
quasiperiodic tilings that exhibit tenfold symmetry. 
Related to each other by decomposition, these tilings 
are most easily generated from their respective 
Fibonacci pentagrid dual tilings. The latter, one of 
which is singular, are based on the property that there 
are three principle Fibonacci quasiperiodic sequences 
that possess mirror symmetry. The resulting tilings, 
while somewhat analogous to the Penrose tilings, are 
more complex in that they contain inequivalent tiles 
of the same shape. Associated with each of these 
decagonal tilings, which belong to different local 
isomorphism classes, are one twofold and two 
different fivefold tilings. Twelve inflations or defla- 
tions are necessary before each of the latter reoccurs 
with the same orientation. 

Introduction 

In the last few years, considerable attention has been 
given to quasicrystal tilings, including the pentagonal 
plane tilings due to Penrose (Penrose, 1974; Gardner,  
1977; Griinbaum & Shepard, 1986). Such study 
(Levine & Steinhardt, 1986), with its extension to 
other dimensions and point symmetries (Socolar, 
1989), was greatly spurred on by the discovery of 
icosahedral (Schechtman, Blech, Gratias & Cahn, 
1984) and decagonal (Bendersky, 1985) phases of 
metallic alloys. It has led to several methods whereby 
one can now generate an infinite variety of such 
theoretical structures in a straightforward way 
(Socolar & Steinhardt, 1986). Here one such approach 
is taken, namely, the dual method (de Bruijn, 1981; 
Kramer & Neri, 1984), and is used to generate three 
significant tilings of perfect tenfold symmetry and 
infinite extent. One infinite twofold and two infinite 
fivefold tilings, associated with each of the tenfold 
patterns, are also described. Also discussed is the 
important relationship of these new tilings to those 
of Penrose and, more directly, to the three- 
dimensional zonohedral tilings proposed as a natural 
framework for the icosahedral alloys (Socolar & 
Steinhardt, 1986). 

Penrose patterns are ideal infinite aperiodic tilings 
that have the property of deflation (or inflation) 
whereby they can be decomposed into similar smaller 
(or larger) tiles, which fit together in the same way 
as in the original version (Gardner, 1977). Since the 
deflated or inflated tilings possess the same local 
environments, apart from a scale factor, as the 
original, they are said to be of the same 'local 
isomorphism' class (Levine & Steinhardt, 1986). Each 
successive deflation or inflation leads to tiles that are 
smaller or larger by a factor r = (1 + x/5)/2, the golden 
mean. Moreover, one way of marking the tiles to 
ensure aperiodicity when they are joined together is 
simply to imprint them with one of the deflated pat- 
terns into which they can be subdivided. However, 
another important way of decorating the tiles is with 
line segments such that, when the tiles are properly 
joined, continuous straight lines, the 'Ammann lines', 
result (Griinbaum & Shepard, 1986), forming five 
overlapping parallel-line grids. Each of these grids is 
perpendicular to one of five principal directions in 
the plane and together they form a 'pentagrid'  (de 
Bruijn, 1981). 

Pentagonal tilings generalized from the Penrose 
rhombic pattern generally consist of two shapes, 
namely a thick rhomb and a thin one, with the edges 
of the tiles parallel to one of the above principal 
directions. Many can be shown to be dual to a pen- 
tagrid and can be derived from it in a straightforward 
way (de Bruijn, 1981). That is, each open space in a 
pentagrid can correspond to the corner of a rhomb 
in the dual tiling. Going from one space to another, 
that is, crossing a grid line, then corresponds to a 
unit step perpendicular to that line, i.e. the edge of 
a tile. Conversely, each intersection in the pentagrid 
corresponds to a tile itself. If the acute angle at an 
intersection is 36 °, the rhomb is thin, whereas an angle 
of 72 ° leads to a thick.rhomb. Interestingly, with a 
Penrose tiling the characteristic Ammann-line decor- 
ation associated with its parent (the tiling inflated by 
one order) serves as its pentagrid dual (Socolar & 
Steinhardt, 1986). Moreover, the spacing within each 
of the five grids forming this pentagrid is related to 
the quasiperiodic Fibonacci sequence (de Bruijn, 
1981; Griinbaum & Shepard, 1986), a special 
sequence of long and short spaces. However, the 
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Penrose pattern can also be generated from a periodic 
pentagrid dual (Socolar & Steinhardt, 1986). 
Moreover, as will be discussed later, generally more 
than one Ammann-line decoration exists for the same 
tiling. Analogous statements apply to tilings of other 
symmetries (Socolar, 1989). 

The dual method can be generalized. For instance, 
the line spacing within a grid can be arbitrary, as can 
the direction of its normal. In three dimensions, a 
grid would consist of parallel planes and the tiles 
corresponding to the intersection of three planes 
would be rhombohedra (Socolar & Steinhardt, 1986). 
The possibilities are endless. Here we primarily 
examine some other especially significant tilings, 
besides Penrose's, that can result from Fibonacci 
pentagrid duals. As a guide to this approach, we first 
study several generations of the Fibonacci sequence 
itself, since each Fibonacci grid within a pentagrid 
inflates or deflates in a prescribed way (Griinbaum 
& Shepard, 1986). Through the dual method, the 
inflation or deflation schemes for the associated tilings 
can then be found. The Fibonacci sequence is of 
course itself the prototype of a one-dimensional 
quasicrystal. In Fig. 1 we show successive deflations 
of a long spacing, L. As shown, L-> t./2, s, I./2 and 
S -  L/2, I./2. Thus a short space in the parent pattern 
is equal in length to a long space in the deflated 
pattern. Similarly, a long space becomes a long-plus- 
short space when deflated. Also, since L / S  = r ,  this 
rule leads to successive generations that differ in scale 
by that same factor. 

The rhombic tiling derived from Penrose's 'infinite 
cartwheel' pattern (Gardner,  1977), originally com- 
posed of kites and darts, is shown in Fig. 2. This 
pattern is especially appropriate for illustrating the 
above properties because its deflated version is simply 
a smaller replica of the same tiling, but rotated about 
the center, C, by 180 °. The deflated pattern is either 
obtained by decomposition or by simply taking the 
dual of the Ammann-line pentagrid decoration shown 
superposed on the tiling. However, this pentagrid is 
composed of five identical Fibonacci grids whose 
centers correspond to the line in Fig. 1 labeled c. 
These sequences, like the tiling itself, reverse with 
each deflation, so, for instance, the second generation 
is identical to the parent (zeroth generation), apart 
from the reduction by the factor r 2. The tiling in Fig. 
2 is itself the dual to the pentagrid based on the 

sequence c in Fig. 1, whereas the Ammann-line pen- 
tagrid in Fig. 2 is based upon the sequence g. The 
various pentagrids discussed in this paper are given 
in the Appendix (Fig. 7) with the same labels as the 
corresponding Fibonacci sequences in Fig. 1. 

It is remarkable that, except for the central S L ,  the 
Fibonacci sequence c, corresponding to the cartwheel 
pattern, i.e. - L L S L S L L S L L -  is completely symmetric 
about its center (Griinbaum & Shepard, 1986). Other- 
wise, the resulting tiling would have perfect tenfold 
symmetry rather than the tenfold pseudosymmetry 
that is its hallmark. The reason the cartwheel actually 
only possesses left-right (mirror) symmetry, rather 
than fivefold, is that two of the grids are reversed. 
(Considering our principal directions to be every 72 ° 
starting from the top of the page, these reversed grids 
are those normal to the +72 ° directions.) 

Slightly more complex behavior is found in the 
regions in_Fig. 2, labeled S and S' (or their rotated 
versions, S and ,~'), having local fivefold symmetry, 
one type leading to the other upon deflation. These 
regions, of course, serve as nuclei for patterns that 
are the rhombic versions of Penrose's 'infinite sun' 
or 'infinite star' kite and dart patterns (Gardner,  
1977). It is evident that the regions S (or S) in Fig. 
2 are generated from corresponding Ammann-line 
duals in the neighborhood of S' (or S') and vice  versa.  

Locally, each of these pentagrids is composed of five 
identical Fibonacci grids, the center of each corres- 
ponding to the line marked s (for sun, star) in Fig. 
1. In particular, deflation along s in Fig. 1 yields the 
grid sequences labeled s and then s', followed by g 
and g', before the whole process repeats. The same 
would apply to the corresponding infinite fivefold 
tilings themselves. This illustrates why one has the 
deflation chain: sun, star, rotated sun, rotated star, 
sun etc. in the original Penrose tilings (Grfinbaum & 
Shepard, 1986). Thus, starting with a particular five- 
fold tiling, two orders of deflation cause 180 ° rotation 
(and a change in the scale by a factor of z 2) but the 
pattern does not truly repeat in orientation as well 
until the fourth generation. 

N e w  t i l i n g s  w i t h  t e n f o l d  s y m m e t r y  

In addition to the above, there are other important 
symmetry points associated with the Fibonacci 
sequence that can lead to tilings comparable to 

[ ......... ~b ._ '* __!'~ . . . . .  .:~ _ _J 
. . . .  "~_ I i_ ~' __'° _ _  _1 __1~ . . . .  

t _ ,  . _ g , f _ . . l  . . . .  ~'1 i , o _ . l  - ] - - ~  ' ~  
/ .'~. ? -  , ~ _ ~  ;to T - -  . ,~]- j " 

.1 . . . .  L_r~_ I 1 l ; s ' . l _ ~  1 ! " i l'.c I 1 
E_:_].~i :,~ J ~ ~_L : ~ l - - ~ . ' ; l - : r _ ~ ' Z r ~ . ' ~ L ~ - ] -  ~ 
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Fig. 1. The quasiperiodic Fibonacci sequence. The special inflation/deflation chains f, s, t and c are discussed in the text. 
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Penrose's. For instance, it is apparent from Fig. 1 
that there are three kinds of sequences that, in fact, 
do have perfect mirror symmetry. They are associated 
with the line marked t. Thus a pentagrid composed 
of one of the above grid types, properly centered, 
would yield a dual tiling possessing true tenfold sym- 
metry. Pursuing this, we first consider such a pen- 
tagrid based on the sequence in Fig. 1 labeled t,, 
- S L L S L S L L S - .  The resulting infinite tenfold tiling 
dual to this pentagrid, which we label T,, in Fig. 3(a),  
is seen to be centered about a 'flower' of ten thin 
rhombs. Although there are an infinite number of 
such flowers in the extended pattern, only the central 
one can be a point of true tenfold symmetry. The 
salient properties of this pattern such as infla- 
tion/deflation, Ammann lines, matching rules, in- 
equivalent cells of the same shape and the possible 
twofold tilings, or fivefolds derived from the star 
arrangements, remain to be examined.* Before doing 
so, however, the two remaining tenfolds based on the 
central line t in Fig. 1 will first be obtained. 

Therefore, proceeding to the dual of the pentagrid 
derived from the symmetric sequence tb, i.e. 
- L S L L S L L S L - ,  the deflation of ta, one arrives at the 
second tenfold tiling Tb in Fig. 3(b). For now, it is 
simply noted that although this second tiling also has 
flowers and stars, it is clearly not locally isomorphic 
to Ta. Continuing down line t in Fig. 1, one may 
construct the pentagrid based on the sequence t,., 
consisting of the symmetric - L S L S L L S L S L - .  This 
pentagrid is remarkable in that it contains many inter- 

. . . . . .i, .",, ..,:.,..1 .~..-".... ,....-,i.... :."."... i.-",.. .:",, : , "  
• - ,  . .  . . ~  . . . : . .  . . . . .  , . 

* Of course, as in the Penrose case, infinite tilings of no particular 
symmetry may be obtained by expanding about an arbitrary point 
via deflation. 

Fig. 2. Rhombic version of Penrose's infinite cartwheel tiling. Also 
shown is the corresponding Ammann-line pentagrid decoration 
(dotted lines). The point C marks the center, while S and S' 
etc. mark points of local fivefold symmetry, related to Penrose's 
infinite sun and infinite star patterns. 

sections of more than two grid lines. For this reason, 
such a pentagrid has been termed 'singular' (de 
Bruijn, 1981). It is unique in that tiles generated from 
it via the dual method are not only rhombs but also 
hexagons, octagons and decagons, corresponding to 
intersections of three, four or five Ammann lines, 
respectively. The actual tiling by such shapes, To, 
derived from this singular pentagrid and sequence to, 
is shown in Fig. 3(¢). It is seen to consist of four 
different shapes, a thick rhomb, a thick hexagon, an 
octagon and a decagon. In fact, of the possible poly- 
gons, only the thin rhomb and thin hexagon are absent 
from this striking pattern. (The thin hexagon would 
be equivalent to one thick and two thin rhombs, 
whereas the thick hexagon decomposes into one thin 
and two thick rhombs.) 

It is a general characteristic of all three patterns 
that, as one moves out from the true center, the local 
tenfold regions resemble the infinite tenfold pattern 
to a greater and greater extent. A corresponding state- 
ment applies to the local two- and fivefold regions 
which more and more resemble the infinite two- and 
fivefold patterns discussed in the next section. The 
Penrose tilings, of course, possesses this same general 
property (Gardner, 1977). 

The chain -ta, tb, t,., ta- in Fig. 1 leads to the 
deflation of the tenfold tilings in the order 
-Ta, Tb, Tc, T,,- with the lengths of the tile edges 
decreasing each time by the factor r. [In Fig. 3(a),  
tiling T~ is a factor of r smaller than this scheme so 
that more of it may be shown.] In contrast to the 
Penrose case, however, each succeeding deflation 
leads to a tiling that is in a different local isomorphism 
class. Yet with each third generation in the defla- 
tion/inflation hierarchy, the same tiling reappears, 
identical except for a scale factor of ~.3. Clearly, 
therefore, the tilings may be decorated with any 
deflated tiling or any of the three Ammann-line 
pentagrids, suitably scaled. Some of the many 
possibilities are shown in Fig. 4. A portion of tiling 
Tc decorated with one of the next three successive 
tilings, namely Ta, Tb and Tc itself, is shown in Figs. 
4(a) - (c) .  It is thus apparent that a third-generation 
marking of T~ as in Fig. 4(¢) provides a miniature 
plan for easily continuing the tiling to infinity, quite 
analogous to marking the cartwheel by its second- 
generation deflation. If the small tiles in Fig. 4(¢) are 
in turn decorated as in Figs. 4(a) and (b), the other 
two infinite tilings may also be readily obtained. Of 
course these tilings too may be decorated with a 
miniature T 3 replica. (This type of decoration is shown 
in Fig. 6 of the next section.) 

As in the Penrose case, the pentagrid dual from 
which each tiling is generated serves as the canonical 
Ammann-line decoration for the next tiling higher in 
the inflation hierarchy (Socolar & Steinhardt, 1986). 
This is indicated by the dotted lines in Figs. 4(a),  (b) 
and (d),  where T~, Tb and T~ are decorated with 
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pentagrids based on the Fibonacci sequences tb, t,. 
and t,~ respectively. However, the other pentagrids 
can also serve as Ammann-line decorations for the 
three filings. For example, the singular pentagrid 
based upon sequence tc is a particularly pleasing 
decoration [dashed lines in Figs. 4(b) and (c)]. When 
used for T,., its dual, each tile contains the appropriate 
multiple-line intersection that generated it. However, 
the other filings are not quite as transparently marked 
by their respective duals. 

The various decorations of these three new patterns 
not only establish matching-rule schemes but also 
enable one to distinguish inequivalent tiles. Using the 
above procedures for T,~ leads to two inequivalent 
thin and, as in Fig. 4(a),  five inequivalent thick 
rhombs. In the case of Tb, there are one thin and 
three inequivalent thick rhombs. For To, all decagons, 
octagons and hexagons are equivalent. However, 
there appear to be two inequivalent thick rhombs 
[Figs. 4(a) and (d) and the small tiles in Fig. 4(c)]. 

(a) (b) (c) 

Fig. 3. The three infinite tenfold tilings, dual to pentagrids based on respective Fibonacci sequences in Fig. l, centered about the line 
labeled t. (a) To, (b) T h and (c) T,. 

(a) (b) (c) (d) 

Fig. 4. Several decorations of the tiles of 1",. (a) Tiling To and pentagrid th, (b) tiling Th and pentagrid t,, (c) tiling T, and pentagrid 
t, and (d) pentagrid t o. In each case, the Ammann-line pentagrid decoration is indicated by dotted lines. 
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Fig. 5. Decagonal tiling Tb with its three inequivalent thick rhombs indicated by different colors. 
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Fig.  7. T h e  v a r i o u s  F i b o n a c c i  p e n t a g r i d s  t h a t  a r e  d u a l  to  t h e  t i l i n g s  d i s c u s s e d  in t h i s  w o r k .  
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The actual number  of  inequivalent  tiles depends  upon 
the decoration. As the latter becomes more deflated 
and less coarse, some of the inequivalency disappears .  
This is evident in the decorat ions of the large tiles in 
Figs. 4(b) or (c), where the two thick rhombs have 
the same decoration. Similarly,  with a finer decor- 
ation, the two types of smaller  thick rhombs forming 
the completed stars in Fig. 4(a)  would appear  
equivalent.  This behavior  appears  to be universal  for 
those tilings, inc luding Penrose's,  that are amenab le  
to decomposi t ion.  A natural  coloring scheme then 
would be s imply to assign different colors to 
inequivalent  tiles. Tiling Tb is treated this way in Fig. 
5. Based on the results here, it is conjectured that all 
inequivalent  tiles, rather than a subset, are required 
to form a tiling. 

It is readily apparent  from Fig. 4 and Fig. 6 of the 
next section that the deflation and Ammann- l ine  

decorat ions both offer consistent sets of  matching 
rules that ensure quasiperiodici ty.  The rule for the 
A m m a n n  lines is that not only do all lines join to 
form straight lines, but they jo in  to form a Fibonacci  
pentagrid.  Without the latter restriction, the thin 
rhombs  in Fig. 4(b) could be jo ined  in a periodic 
manner .  However, in accordance with the previous 
discussion, finer decorations,  such as in Fig. 6, or 
decorat ion with deflated pentagrids ta, th or tc itself, 
would prevent a periodic arrangement.  

It is noted here that another  infinite tenfold 
rhombic  pattern has appeared  in the literature 
(Conway & Knowles,  1986), generated from higher- 
d imens iona l  space via the projection technique.  It 
somewhat  resembles T,, or Tb and can be shown to 
be dual  to a periodic pentagrid,  i.e. one where the 
center of  the grid pattern lies halfway between two 
of the lines in each identical  periodic grid. That 

(a) 

i 

(.f) (d) (e) 

(b) (c) 

Fig. 6. Three pairs of infinite fivefold patterns locally isomorphic to the respective tilings of Fig. 3. They are also dual to pentagrids 
based on the respective Fibonacci sequences in Fig. 1 centered about the deflation line, labeled f. Superposed are representative tiles 
associated with the 7 "3 third-order inflation in each case. A dot slightly below each fivefold center in (d)-(f) indicates a nucleation 
point for the infinite twofold pattern. 
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particular pattern appears to have the greatest density 
of local ten-fold points (flowers) obtainable by projec- 
tion (Ishihara & Yamamoto, 1988). However, the 
density of flowers in the tiling T, is higher by a factor 
of r 2, albeit at the expense of having a few of the 
inequivalent thick rhombs joined in a crystallographic 
manner. The only other possible periodic pentagrid 
consistent with tenfold symmetry is singular, with five 
grid lines passing through the origin. Its dual may be 
described as essentially the rhombic c.artwheel pat- 
tern, except for a decagon replacing the central cart- 
wheel cluster and the spokes of the cartwheel, the 
'worms', replaced by chains of thick and thin 
hexagons. It is known ( c f  Socolar & Steinhardt, 1986) 
that duals of periodic pentagrids are equivalent to 
projections from five-dimensional hypercubic lattices. 
Therefore, it is evident that the three new tenfold 
tilings described in this paper cannot be obtained by 
means of such a projection. 

Related two- and fivefold tilings 

As with the Penrose patterns (Gardner, 1977; Griin- 
baum & Shepard, 1986), each of the above tilings 
contains two kinds of regions that can lead to different 
infinite fivefold tilings. These are most easily gener- 
ated by starting with either of the two possible stars 
formed with five identical thick rhombs from the 7",. 
tiling (Fig. 4c) and expanding outward using one of 
the possible deflation decorations to ensure proper 
matching. [The points that become fivefoid centers 
are labeled F in Fig. 4(c).] By using the Ta and Tb 
decorations (Figs. 4a and b), four more patterns are 
formed. These tilings, six in all, are shown in Fig. 6 
together with their respective 7 "3 third-order-inflation 
supertilings superposed. The deflation sequence is as 
follows" F~, Fb, Fc, F ' ,  F~,, F~., and then the same 
order again but with each tiling rotated by 180 ° etc. 
The _ respective supertilings are, of course, 

- - !  ! p 

F~,, Fb,  F,., Fa, Fh and Fc etc. In Figs. 6 ( d ) - ( f ) ,  the 
tilings have been increased in size by the factor ~.3, 
so the supertiles correspond to the small tiles in Figs. 
6 (a) - (c ) ,  respectively. 

Similar to the preceding cases, one can identify 
points in the Fibonacci sequence that correspond to 
the centers of the pentagrid duals associated with 
these fivefold patterns. These points are labeled f in 
Fig. 1 with the associated Fibonacci sequences labeled 
f~, fb  etc., respectively. Therefore, although the same 
local isomorphism class appears every third gener- 
ation, the same basic tiling, rotated, reappears every 
sixth generation. Therefore, it takes twelve gener- 
ations before a pattern reoccurs with the same orienta- 
tion and thus scaled by a factor of r ~2, i.e. -322 .  It 
should be noted that the remaining inequivalent thick 
rhombs occurring in tilings T,, and Tb do not lead to 
viable fivefold patterns that can be continued to 
infinity via inflation/deflation. 

There is also one infinite twofold tiling associated 
with each of the tenfold tilings. Although not 
specifically shown, these tilings are obtained by 
expanding in the vicinity of the dots in Figs. 6 ( d ) - ( f )  
somewhat below the centers of the fivefold patterns. 
The respective duals of these patterns are each found 
to consist of grids based on all three symmetric 
Fibonacci sequences but in different order. The nuclei 
of such pentagrids are discernible in the last three 
pentagrids in Fig. 7. 

Discussion 

An approach similar to this work, using points of 
symmetry in a one-dimensional quasiperiodic 
sequence, would apply to other point symmetries and 
other dimensions. In particular, there is a straightfor- 
ward connection with the three-dimensional patterns 
(Socolar & Steinhardt, 1986) based on the zonohedra 
that are generated via the dual method from hexagrids 
based on the three Fibonacci sequences along the line 
t in Fig. 1. Contrary to the present two-dimensional 
case, each of those sequences leads to singular 
hexagrids in three dimensions, with the respective 
dual tilings all belonging to the same local isomor- 
phism class. It is evident that such zonohedral tilings 
can also be decorated with an Ammann pattern (a 
hexagrid) which is dual to the tiling itself. They have 
been called (Socolar & Steinhardt, 1986) the three- 
dimensional counterparts of the Penrose tilings. Yet 
they are also perfect three-dimensional analogs of T,. 
and F,., F',. etc. Therefore, the formal proofs of the 
matching rules, inflation/deflation properties etc. for 
the former must hold for the latter by analogy. 
Moreover, since tilings Ta and Tb etc. are decomposi- 
tions of T,, etc. with the same point symmetries, it is 
not surprising that similar properties also apply to 
them. 

It has been remarked that a singularity in a pen- 
tagrid may be removed by slightly shifting its 
individual Fibonacci grids (de Bruijn, 1981). Such a 
procedure would certainly decompose a polygon into 
its constituent rhombs. Yet, clearly, one cannot gener- 
ate the tilings of the Penrose local isomorphism class 
in this manner by infinitesimally shifting the grids of 
the singular pentagrid associated with, for example, 
tiling To. The tilings presented here cannot be con- 
sidered as decorations of the Penrose tilings. 

Some avenues for further study would include the 
intriguing behavior of a pattern reoccurring after 
many deflations or inflations, as well as the question 
of which tiles of the same shape are equivalent. There 
is also the question of whether these patterns can be 
obtained via projection from some higher-dimen- 
sional structure other than hypercubic. In addition, 
there remains the possible relationship between 
the tilings described here and the decagonal alloy 
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phases (Bendersky, 1985) that have been shown to 
possess tenfold quasiperiodic symmetry in two 
dimensions, but yet are periodic in the third direction. 

APPENDIX 

The various Fibonacci pentagrids associated with the 
tilings discussed earlier are given in Fig. 7. The nota- 
tion is the same as the corresponding sequences in 
Fig. 1, where the positive direction is to the right. The 
pentagrids are formed by orienting grids correspond- 
ing to a given sequence along the five principal direc- 
tions in the plane, of which the first points towards 
the top of the page. The respective tilings, dual to 
these pentagrids, are similarly denoted, but 
capitalized. 
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Abstract 

The scaling scheme in the quantitative phase-determi- 
nation procedure proposed by Chang & Tang [Acta 
Cryst. (1988), A44, 1065-1072] is corrected by taking 
the average peak intensity of two centrosymmetrically 
related three-beam diffractions as the maximum kine- 
matical intensity for the reconstruction of the phase- 
independent intensity profiles. By subtraction of these 
phase-independent profiles from the measured 
intensity distributions, more reliable information 
about phases can be obtained. This procedure is 
applied to the three-beam diffraction profiles of 
several organic crystals, reported by Hiimmer, 
Weckert & Bondza [Acta Cryst. (1990), A46, 393- 
402], for quantitative phase analysis. The determined 
phase values are in good agreement with those calcu- 
lated from the known structures. 

I. Introduction 

The phase ~ of a structure-factor triplet can be deter- 
mined qualitatively by analyzing the asymmetry of 
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the profile tails of the diffracted intensity distribution 
of a simultaneous three-beam diffraction. That is, cos~ 
can be determined (see, for example, Chang, 1982; 
Juretschke, 1982; Post, 1983; Gong & Post, 1983; 
Shen & Colella 1988; and many others). Recently, 
semiquantitative/quantitative determination of this 
phase has become feasible (Chang & Tang, 1988; 
Tang & Chang, 1988; H/immer, Weckert & Bondza, 
1989; Zuo, Spence & Hoier, 1989; Chang, Huang, 
Tang & Lee, 1989; Weckert & Hiimmer, 1990; 
H/immer, Weckert & Bondza, 1990) via the inspection 
and analysis of the entire diffraction profiles. 

In the phase-determination procedure proposed by 
Chang & Tang (1988), a three-beam intensity profile 
is assumed to be composed of a dynamical (phase- 
dependent) part and a kinematical (phase-indepen- 
dent) part, which are related to the coherent and 
incoherent contributions, respectively, of this par- 
ticular diffraction process. To extract phase informa- 
tion from the intensity distribution, the dynamical 
part ought to be delineated from the measured 
intensity profile. This can be done by first reconstruct- 
ing the kinematical part, a Lorentzian, with its width 
equal to the experimental peak width and its 
maximum value determined by matching the 
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